Stability Analysis of Fractional Differential Systems with Order Lying in (1,2)
نویسندگان
چکیده
The stability of n-dimensional linear fractional differential systems with commensurate order 1 < α < 2 and the corresponding perturbed systems is investigated. By using the Laplace transform, the asymptotic expansion of the Mittag-Leffler function, and the Gronwall inequality, some conditions on stability and asymptotic stability are given.
منابع مشابه
Study on stability analysis of distributed order fractional differential equations with a new approach
The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...
متن کاملOn asymptotic stability of Prabhakar fractional differential systems
In this article, we survey the asymptotic stability analysis of fractional differential systems with the Prabhakar fractional derivatives. We present the stability regions for these types of fractional differential systems. A brief comparison with the stability aspects of fractional differential systems in the sense of Riemann-Liouville fractional derivatives is also given.
متن کاملMulti-step conformable fractional differential transform method for solving and stability of the conformable fractional differential systems
In this article, the multi-step conformable fractional differential transform method (MSCDTM) is applied to give approximate solutions of the conformable fractional-order differential systems. Moreover, we check the stability of conformable fractional-order L"{u} system with the MSCDTM to demonstrate the efficiency and effectiveness of the proposed procedure.
متن کاملMulti-step conformable fractional differential transform method for solving and stability of the conformable fractional differential systems
In this article, the multi-step conformable fractional differential transform method (MSCDTM) is applied to give approximate solutions of the conformable fractional-order differential systems. Moreover, we check the stability of conformable fractional-order L\"{u} system with the MSCDTM to demonstrate the efficiency and effectiveness of the proposed procedure.
متن کاملStability and Robust Performance Analysis of Fractional Order Controller over Conventional Controller Design
In this paper, a new comparative approach has been proposed for reliable controller design. Scientists and engineers are often confronted with the analysis, design, and synthesis of real-life problems. The first step in such studies is the development of a 'mathematical model' which can be considered as a substitute for the real problem. The mathematical model is used here as a plant. Fractiona...
متن کامل